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FAILURE DETECTION AND ISOLATION INVESTIGATION
FOR STRAPDOWN SKEW REDUNDANT TETRAD

! I_ASER GYRO INERTIAL SENSOR ARRAYS

By A.J. Eberlein and T.G.I.,ahn
i Honeywell Inc.

SUMMA RY

: A study was performed to determine the degree to which flight-critical :

failures in a strapdown laser gyro tetrad sensor assembly can be isolated in :

i : short-haul aircraft after a failure occurrence has been detected by the skewed
sensor failure-detection voting logic. Also investigated was the degree to

which a failure in the tetrad computer can be detected and isolated at the

computer level, assuming a dual-redundant computer configuration.

' The tetrad system was mechanized with two two-axis inertial navigation

channels (INCs), each containing two gyro/accelerometer axes, computer,i

,.,; control circuitry and input/output circuitry. Gyro/accelerometer data is
i

crossfed between the two INCs to enable each computer to independently per-

i I form the navigation task. Computer calculations are synchronized between
l

'0 the computers so that calculated quantities are identical and may be coro-
t ;

pared.

i No way was found to guarantee complete fail-operational/fail-safe_ J pe_fc,,-,_r_ance from a tetrad with redundant computers. Fail-safe performance

" (identification of the first failure) can be accomplished with a probability

i approaching 100% of the time, while fall-operational performance (identift- '

cation and isolation of the first failure) can be achieved 93 to 96% of the time. _,

! _ During those times when the system operates satisfactorily after the first

failure (first failure has been identified and isolated), fail-safe performance

} , (identification of the second failure) can be accomplished 93 to 96% of the

time.
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SECTION 1

INTRODUCTION

[

This report documents the results of a study performed by Honeywell Inc.

investiga+ing laser gyro self-test capability and computer self-test concepts

as applicable to a strapdown tetrad inertial navigation system. Prior to this

study the fail-operational/fail-safe characteristics of a tetrad INS mechanized _

with laser gyros had not been investigated.

The study was initiated by NASA Ames Research Laboratory to deter-

mine the performance viability of a tetrad strapdown inertial navigation sys-

tem against a fail-operational/fail-safe criterion. A tetrad consisting of two

two-axis inertial navigation channels (h-NCs) was configured as a reference,

with the main thrust of the study aimed at gyro self-test capability and com-

puter fault isolation.

Section 2 describes the tetrad configurationchosen as a reference and

describes the relationshipbetween the two two-axis INCs. Section 3 dis-

cusses tetrad system redundancy management concepts as applicable to the

gyros and computers. Included in this section are general relial:Llity con-

siderations and two alternate dual-comp,_ter configurations. Section 4

describes the functional a veas of the laser gyro along with a reliability

analysis of each functional area. The impact of a failure in each functional

area is assessed and BIT circuitry identified to detect the failure• A proba-

bility of failure detection is arrived at for each functional area within the

laser gyro, Section 5 describes failure detection and isolation techniques

that can be used to self test either of the dual computers. A qualitative

evaluation of the self-test effectiveness is also provided so that the feasi-

bility of the concept can be evaluated. Section 6 assesses the impact on

short-haul aircraft safety of flight of using the tetrad gyros for stability

augmentation, attitudereference and navigatmn.

m._

,!

.J
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SECTION 2

TETRAD SYSTEM DESCRIPTION

The tetrad skewed sensor array represents the simplest form of gyro

• - redundancy that may be mechanized into a strapdown navigation sy.Aem. A

tetrad array combined with a dual-redundant computer configuration was used

.. to mechanize the tetrad inertial navigation system investigated in this study.

Skewed sensor redundancy is a technique that enables a single inertial

sensor (gyro or accelerometer) to replace any failed sensor regardless of its

input axis orientation. The concept is to mount the sensors such that their

input a=.es are nonorthogonal (skewed) relative to one another, _vith any set

• of three input axes nonplanar. With this arrangement, any set of three sen-

sor outputs can be used to derive (in the system computer) the eqaivalent

output of an orthogonal sensor triad. Thus, four skewed sensors would be

capable of generating complete three-axis orthogonal output data with up to

one sensor failure, and five skewed sensors would be capable of tolerating

two failures. In a conventional redundancy appz'oach, two sets of orthogonal

triads (i. e., six sensors) would have the same redundancy capability as four

skewed sensors. The hax.dware savings is substantial with the skewed

approach as the redundancy requirement increases.

In the strapdown approach, the inertial sensor triad (gyros and accel-

erometers) are mounted directly to the _irt'rame. Both the gyro and accel-

erometer outputs are directed to the system computer. The computer pro..

cesses the gyro data to continuously determine aircraft attitude relative to

! earth-referenced coordinates. The attitude data is used with the aircraft..

mounted acceleromeLer signals to compute the equivalent acceleration data

i in the earth-referenced coordinate frame. Thus, the computer analytically

_ simulates the function of the gimbal assembly in the gimbaled approach.

t

; !

I,
3

j if ,' t
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The remainder of the computation to determine aircraft velocity, posi-

tion, and reference torquing commands is identical to the gimbaled approach.

The emergence of the strapdown system as a more practical and cost-effective

system rests on the development of digital computers that are relatively in-

expensive and that have the computational speeds necessary to perform the

strapdown navigation computat,ons rapidly.

Fig_lre 1 is a block diagram showing the general configuration of the

tetrad navigation system which consists of two identical two-axis inertial

navigation channels. The two angular rate and acceleration signals from

each two-axis sensor array are sent to each computer. The computer com-

putational frames are synchronized through the use of a 40-msec clock inter-

change, while the data crossfeed permits each computer to compare its output

with that of its counterpart (see Appendix A).

Other computer inputs generally include an altitude signal, mode control

and latitude/longitude initialization data for the inertial computations from

the aircraft control panel. Outputs from each computer, in general, are

a-c, d-c, digital, and discrete outputs to the other aircraft systems and

disp_,ays.

The orientation of the input axes of one of the gyro/accelerometer sets in

a +wo-axis inertial navigation channel is shown in Figure 2(a) ard is parallel

to the long axis of the box (normal to the front face). The second gyro]

a_'_,elerometer set is mounted with input axes perpendicular to tim first set

but skewed 54.7 degrees (nonorthogonal) relative to the base. The two two-

axis inertial navigation channels are mounted to a common base, which is

part of the aircraft rack structure, in precision alignment such that the long

axes of the boxes are skewed relative to one another. This mounting arrange-

ment is shown in Figure 2(b),

With the two-axis INCs oriented this way, the gyro/aecelerometer sets

become aligned relative to one another such that the input axes m the four

sensors (tetrad) are noncopianar (i. e., they do not lie in a single plane). -

4
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Under these conditions, software routines in the computer can operate on the

tetrad signals to analytically compute the equivalent roll, pitch, and yaw axis

rate/acceleration data for computer operations. In addition, three of the four

; tetrad gyro/accelerometer signals can he combined to analytically derive what

the fourth sensor set is measuring. If the derived _ignals are unequal to the

fourth set output (within prescribed tolerances}, a failure has occurred in one
l

of the tetrad sensors.

Figure 3 illustrates the inertial computations in the system computers,

showing the inertial calculations data fl0w. The computer first compensates

the input data from the two-axis skewed gyro/accelerometer sets for known

systematic errors in each instrument such as bias, scale factor, and mis-

alignment. The compensated skewed gyro/accelerometer signals are then

: compared in the skewed voting algorithms for failure detection and computa-i
tion of equivalent three-axis orthogonal axis data (roll, pitch yaw axis rate

and acceleration}, assuming no failure is indicated. Appendix B provides the

derivation of a representative set of skewed redundancy gyro voting equations

and skew-to-orthogonal transformation equations that would be programmed

into the system computer. Skewed accelerometer equations would be similar

to those for the gyros in Appendix B.

; The roll/pitch/yaw angular rate derived from the skewed gyro voting !

i logic Ls then used in a three-axis attitude integration algorithm to compute

the attitude of the aircraft (more specifically, the accelerometer assembly)

relative to local vertical/azimuth coordinates. The angular rate of the air-

craft over the surface of the earth (due to earth' s rotation and aircraft

velocity} is included in this computation to account for the rotation rate of the

local vertical.

The aircraft attitude data is used to resolve the roll/pitch/yaw aircraft

axis acceleration vector data from the skewed accelerometer voting logic into

the local vertical/azimuth coordinate frame. The computed horizontal]

vertical acceleration components are then integrated in an inertial velocity/

i l position computation algorithm to calculate aircraft horizontal velocity and

(i
7 _
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: , . latitude/longitude position. Barometric altitude is used in the inertLal

; computation to stabilize the vertical channel.
q ,.-

! Figure 4 shows signal flow through the tetrad. The sensor signals are i

' crossfed to the control and holding circuitry of each two-axis navigation ;

system, The sensor information is stored in memory until it is subsequently

• used to calculate the required outputs.

t .
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i i : SECTION 3 "

i SYSTEM REDUNDANCY MANAGEMENT CONCEPTS :

i ! General Reliability Considerations

! Past analog systems have relied primarily on the use of additional

_ j components (hardware redundancy) to meet system fault specifications (i. e., i

i fail-operational/fail-safe, etc. ). When digital systems are considered, ;

I i various combinations of three types of redundancy can be used -- additional

i programming for a self check (software redundancy); repetition of calculations
t i or similar calculations for self check (time redundancy)_ and use of additional

i L2 components for cross checking (hardware redundancy). Each of these three

[ i types of redundancy has its advantages and disadvantages and can be applied

! _J" in varied degrees depending upon the requirements and philosophy used in the

.. system design.

Computational failures.- Both analog and digital systems can have either
r ; m

!!'' transient or permanent faults. However, because of the binary nature of the
digital computer, its errors result in logic faults (for example, a "1" is in a

! i' specific bit instead of a "0"). Transient and permanent faults are caused by

_: component failures, intermittent malfunctions, and external interference

during computation. Most faults will cause an error in the program being

i ! executed by the computer either an instruction is not executed correctly,

or an incorrect result is computed. Faults can cause either or both instruc-

.i tion and result errors. The exact nature of the fault depends on the nature
of the component failure.

For example, component failures in certain areas of memory or I/O

could result in a single bad value or output whereas other component failures

_'_ in more critical points could result in a completely inoperative computer.

[._ Hardware re dundanc_r.- The use of identical multiple circuits or channels

_ I I is the most common form of redundancy in modern analog systems:

11

it ,
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d ....... _ Failurewarning

ChannelA Comparator outputs

II ChannelB _-_

1 •

" Fail 'rewarning
ChannelC Cornparator outputs

i

A triple-channel approach to system redundancy has beer, used tradi-

tionaUy when fail-operational/fail-safe performance has been required.

Flight safety of the above system basically reduces to providing fail-safe

operation on any two channels.

The reliability model for a dual-channel fail-safe computer is shown

below:

,ii i

I H
'" Indicator IFallure .=

Comparator failure |Indicationw

ComputerB

i PCF = (_ : " PIF ) + PUF

_here

PCF = probability of a potentially catastrophic failure

PDF = probability of a detected failure

12
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' PIF _-probability of an indicator failure

i . " PUF = probability of an undetected failure

NOTE: INS failures may or may not have the potential for causing a
catastrophic condition to exist in the aircraft. The classifi-

i cation of failures is a function of many variables such as :
i flight conditions, navigation mode, effect on flight controls

ana instruments, etc. In this report a conservative approach :
is taken relative _o failures by assuming that all failures are
potential catastrophic failures if they are not detected.

The failing indicator must be designed so that the probability of it failing

to respond is very small and the safety problem reduces to: PCF - PUF

where (PDF " PIF ) << PUF" The probability of a potentially catastrophic

condition (PcF) is then approximately equal to the probability of an undetected

failure in the computer.

The system is as good as its failure detection capability. For a dual-

channel comparison-monitored system, the failure detection is performed by

the comparator. Therefore, the system is as safe as the comparator.

To assess the safety of a comparator requires a failure mode and effects

analysis on all parts that can affect flight safety. For a comparator these

include: the comparator design and circuits plus trip levels and any common

elements of the two systems to be compared. A detailed analysis need only

be performed on these items to acquire a high confidence in the system safety.

Parts counts are low, modes are straightforward, and common elements are

easy to identify.

Fail-safe computer approach.- The basic dual-redundant self-check

computer configuration (see below) investigated in this study can provide fail-

operational/fail-safe capability to the extent that fail-safe operation can be

mechanized into a single-channel computer.

l
r

13
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| ._ Failure indication
A

Multiple ._ '"1
; sensor ComputerA 4b
i input

Framesync NavigationtraitoutlMs

Multiple __ ]
sensor ComputerB
Input

!

I "-,-Fallm Indlr._tM

The reliability model for the "fail-safe" single computer is shown below.

H ]I Indicator _ Failure
Computer failure "- indication

PCF = (PDF " PIF ) +PUF

where

PCF = probability of a potentially catastrophic failure

PDF = probability of a detected failure

PIF = probability of an indicator failure

PUF = probability of an undetected faLlure

For a high-reliability system, the failure indicator must be designed so

that the probability of the failure indicator failing to respond is very small:

PCF -_ PUF

where (PDP " PIF ) << PUF" The probability of a potentially catastrophic

failure _PCF ) is approximately equal to the probability of an undetected failure ta

in the computer.

"i'

14 _ i
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This simply shows that the system is as good as its failure detection

capability. For a single-channel system, failure detection is predominately

self-test. Therefore, the system is as safe as its self-test, and significant

engineering effort is required in the design of the self-test.

To determine the safety level of a flight system requires failure modes

and effects analysis on all parts that can affect flight safety. For a single-

channel computer dependent on self-test, these modes include: the processor, •_

! memory, BIT circuits, I/O, etc. Once all modes are identified, they can be
evaluated to determine if they will be detected. A detailed analysis on a

' major portion of the system is required to gain any confidence in the self-test! ..j

i system. In general, any failure mode that can be identified can be. detected;

: _ but, have all modes been defined? Parts counts are high, and it is especially

difficult to identify all of the conditional failure modes. Latent failures are

i 7 always a potential problem.

l_liabilit_ ;desi_m acceptance criteria.- Figure 5 represents the universe!

_,. of system probabilities, relative to operating status, that are used in this

report.
i

The probability of a failure is the _ of the k t' s of all the system parts,

_ while the probability of a system with no failures is determined by subtracting
the _ of the k t' s from 1.

J
L. The probability of potentially catastrophic failures (PcF) and the proba-

: bility for an inoperative system (PA) may be used as a basic design acceptance
_._ criteria for redundant systems. The probability of an inoperative system

includes the probability of a fall-safe system failure and probability of a

il poteo i U

i' The probability of a fail-operative system can be determined by sub-

tracting PA from the _ of the kt'_ for the system. The probability cff a fail-,

, safe system can be determined by subtracting PCF from PA"
12
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Unfailedconditions Failed conditions

Probabilityof
a fail operative
system(failure
detectedand
isolated)

Pm_bilitv of P_

nofailures

Pm_bility / K:Pm_bllity of;
/ of a fall / t a potentially)
/ safesystem/ _ catastrophic)
/ (failure / "failure (PcF).
/ detectednot/ _(failurenot
/ isolated) / >detected) '_/

PA = Probabilityof an inoperativesystemequals ,
I)mbabilityof a fall safesystem+ probability
of a potenLiallycritical failure

1;'twe 5. - System probabilities

!

16
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Tetrad Sensor/r2aai-Co:,p:_ter Redundancy
Manage net:' ,_ .z_v,'ept

The tefrad sensor/dual-coml_m _. _: ¢.,'_ndancy management concept

• investigated in thi_ study i_ show_ . _ _" _ure 6, In this concept, the t_trad

sensor assemblies feed all sensor _.:ig_;,-_lsand sensor validity signals to both

computers. Each computer the,. performs sensor monitoring and signal

selection in the event of a failure, This sensor monitoring in the computer

is performed so that even _fthe sensor self-testis inconclusive, the com-

puters can detect and disengage the system for a first sensor failure.

The selected sensor signals are used to perform the required navigation

computations. The outputs of these computations are fed by I/O devices to
u.__

the output and failure warning circuits. Sensors are tested by a combination

of self-test and comparison monitoring by the dual computers. The com-

parison monitoring ensures fail-safe opex.ation after a first failure. If the

sensor self-test is conclusive and the failure can be _solated to a particular

sensor, fail-operational performance is achieved using the remaining three

sensors. For any subsequent faLlure, sensor self-test is necessary for safe

disengagement. The failure diagrams for the sensors are included in the
!

following computer config?,_ration discussions. The computer self-test also

feeds these output and warning circuits.

If a failure is detected by the self-test, a failure will be indicated, and

outputs may be inhibited. The basic concept may be used with or without

signal comparison of the dual computer. The following subsection discusses

dual-computer configurationwithout output comparison.

Dual-channel computers without output comparison.- Figure 7 shows the

failure diagram for a dual-c_'.annel computer configuration that rehes cnm-

pletely on self-test for computer failure detection. This di'_gram illustrates

the system slat'us for variour_ failure situations, including the fail-operate

conditions, the fail-safedisengage conditions and the potentiallycatastrophic

condltic,ns.

17
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The fail-operate points are shown by "FO" on Figure 7. These points

are found after the first self-test-conclusive box and may be located by

following a path (left to right) which includes a single failure and a self-test-

conclusive box. The "FO" points means that the failure has been detected

and isolated, thus permitting the system to remain operative. A warning

light is activated in the cockpit indicating a failure has occurred, but the

system remains operative.

The fail-safe points are shown by a "FS" on Figure 7 and mean that a

failure has been detected but not isolated_ These points are located after the

self-test-conclusive box associated with the second failure. A warning light

is activated in the cockpit indicating a failure has occurred and that the sys-

tem can no longer be relied upon and has been automatically disengaged or

should be manually disengaged.

A potentially catastrophic failure point is shown in the right side of

Figure 7; it may be reached by many paths originating from the point labeled

"system operational. " The dark line entitled "critical path" on Figur e 7 is

the dominant failure mode for the configuration where the system is mecha-

nized with two computers which rely on individual self-test for computer

failure detection. For this configuration, the PCF can be approximated by

considering only the critical failure path through the computer because the

probability of a failure in the other paths is several orders of magnitude

smaller. Using the procedure in Appendix D and eliminating insignificant

terms, the PCF equation from Figure 7 reduces to:

PCF = 2 C F • C c • t

where

C F = computer failure rate/hour

C c = computer test deficiency

t = mission time in hours

2O
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This configuration has practical limitations because the computer self-

test effectiveness complezely dominates the PCF value. Figure 8 shows the
overall computer self-test deficiency as a function of the required total failure i

I : probability per flight hour (a plot of the previously derived PCF equation for a

given CF). If a PCF of less than 10 -6 is required, the self-test effectiveness

i has _ be better than 99.990. (Conversely, the overall computer self-test

¢leficiency has to be less than, 001. ) Self-test effectiveness approaching this

level requires very extensive FMEA analysis, i

{

The following failure rates have been estimated in order to show a calcu-

c_ lation of PCF applicable to the critical path shown in Figure 7.

i inputCo er

! 1 processor at 2.790/1000 hr 2.7
f f

• 3 memory cards at 2, 09o/1000 hr/card 6.0

i , 12 computer cards at 1.0%/1000 hr[card 12.0

= 2.1 • 10 -4 failures/hr i,i C F

,' ',, Computer test deficiency C = 0.05

PC.._._t= 2 CF • Cc = failures/hr _i

=2 . 2.1. 10"4. 05. i

= 2.1 • 10-5 i

The probability of an inoperative system (PA) due to a computer or sensor

l failure can be determined from Figure 9 by summing the parallel paths leading

to an inoperative system. This results in the following equation (using

Appendix D):

PA = [2 CFCc+ _. CF 9 (l"Cc)+ 4GFGc+ 2'12GF _ (1.C_,c)

12 Ac)] t+ 4AFAc + AF (1-

21
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The above equ&tior_ can bc simplHied by eliminating all multiple identical

failures (i. e., two gyros, two accelerometers, two computers) because the

failure probability resulting from these paths is several orders of magnitude

smaller than the dominant paths. The equation reduces to

PA =(2CF " Cc +4GF " G,+4A F • Ac)t

where
i

CF = computer failure rate/hr

C c = computer test deficiency .

G_ = gyro failure rate/hr

Gc = gyro test deficiency "_

AF = accelerometer failure rate/hr

Ac = accelerometer test deficiency

t = mission time in hours

Design failures versus random failures.- A distinction is made between

random failures and failures which occur due to design deficiencies in the

hardware or software that preclude satisfactory operation over the complete

operational envelope. The latter failures may appear as simultaneous failures

during actual operation and are not the type of failures given consideration in ,,

this report. ,,

Dual-channel computers with output comparison monitorin_t- Figure I0

is the failurediagram for a dual-channel computer configurationwhere each

computer provides comparison monitoring of itsoutputs with the other com-

puter by the digitalintercom bus. Detection of the firstcomputer failure

approaches an effectivenessof 100%. Effectiveness of isol_tionof the first

computer ,'allureis determined by the computer self-testeffectiveness. A

sensor failure is detected by the computer by summing the sensor signals,

but actual isolationof the failure is dependent on the individualsensor self-

test. This diagram illustratesthe system status for various failure

24
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situations, including the fail-operate condition, the fail-safe disengage

conditions, and the potentially catastrophic conditions for the computer and

the sensors,

A potentially catastrophic failure has occurred when the system expe-

riences a failure but does not disengage or present a warning light in the

cockpit, This point is shown on the right side of Figure 10 and may be

reached by many paths originating from the point labeled "system opera-

tional." The dark lines entitled "critical paths" are the dominant failure

modes for this configuration, The comparison monitoring of the computers

effectively removes the possibility of not detecting the first computer failure

such that the PCF s for the critical path are now determined largely by the
self-test capability of the computers and sensors,

The fail-operate points are shown by "FO" on Figure 10. These points

may be located by following a path (left to right) which include a single failure

and a self-test-,conclusive box, The "FO" points mean that the failure has

been detected by the computer and subsequently isolated by self-test, thus

permitting the system to remain operative. A warning light is activated in

the cockpit indicating a failure has occurred, but the system remains opera-

tive.

The fail-safe points are shown by an "FS" on Figure 10 and mean that a

failure has beer. detected but not ismated. A warning light is activated in the

cockpit indicating a ,aLlure has occurred and that the system can no longer be

relied upon and has been automatically disengaged or should be manually dis-

engaged. In the case of the box entitled "system warning/disengage fails, "

the first failure is indicated in the cockpit as "FS" if the failure cannot be

isolated.

For this configuration, the PCF can be approximated by considering only
the indicated critical paths because the probability of a potentially cata-

strophic failure in the other paths is at least an order of magnitude smaller.

The PCF equation using Appendix D and Figure 10 reduces to: ..:
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PCF = (CF2 CC + 6GF 2 GC + 6AF 2 AC)t2

where

CF -- computer failure rate/hr

CC = computer test deficiency

GF -- gyro failure rate/hr

i GC = gyro test deficiency

: I AF = accelerometer failure rate/hr

AC -- accelerometer test deficiency

i. t -- mission time in hours

t This formula can either be used to find the expected PCF given the self-test
deficiency for the sensors and computer or to find the needed self-test for

! any one function given all of the other numbers. Figure 11 is a plot of

Pt'_ = CF2C C+6FF 2G C + 6AF 2A C

for the following set of conditions:

C C = GC = AC (component self-test deficiencies are the same)

CF - 2.1 • 10"4 (failure/hour)

GF - 0.5 • 10-4 (failure/hour)

AF - 0.4 • 10-4 (failure/hour)

Adding the computer comparison monitoring to the first configuration

practically eliminates the probability of a catastrophic failure in the computer

because computer failures are readily detected. If the failure is not isolated,

a fail-safe configuration results.

27
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This condition is preferred over the first system discussed (Figure 7)

: because a decrease in PCF (increase in safety) by three orders of magnitude
is obtained by only slightly increasing overall complexity. A self-test effec-

, tiveness of 75 to 95% will provide PcF/hr2 values in the 10 .7 to 10 .9 range
', ; ' which are typical of values required to meet safety requirements. These

self-test effectiveness values can be achieved without extensive failure mode

i and effects analysis.

, The probability of an inoperative system (PA) is the same as discussed
for the dual-channel computer configuration (except for the failure rates of

: i.: the computer comparison monitor circuitry which are small).

The effectiveness of dlml-channel computers with and without output
i

'" comparison monitoring is summarized in Table 1.

_ Effect of Self-Test on Fail-Operational Performance

The self-test capabilities of the sensors and computers directly deter-

L_ mine the probability of an inoperative system (PA L Figure 12 shows the
relationship between self-test and an inoperative system and is based on the

_ failure rates shown. This figure and Figure 9 (inoperative system diagram)

L: apply to either the dual computer or dual computer with comparison moni-

_ toring configurations, and, as such, the fail-operational capability of bothsystems is the same. The fail-operational requirements may impact the

sell-test effectiveness as does the catastrophic failure requirement.

_; Self-test homograph.- In the previous illustration a common self-test

deficiency was applied to the computer and sensors. In reality a tradeoff

exists between the self-test capability of each sensor set and the computers.

Figure 13 shows the self-test tradeoff for the complete system and is a
nomograph of the previously derived formula:

Pt_ = CF2Cc + 6GF'Gc + 6AF2 9AC

u t
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This chart can either be used to find the expected PCF" given tbe self-test

_ deficiency for the sensors and computer, or to find the needed self-test for

any one function, given all other numbers. To find the exi_.cted PCF draw
i horizontal lines corresponding to the computer and gyro self-test deficiencies.

Then, draw a vertical line from the intersection of the gyro deficiency and

_ the accelerometer deficiency curve. The point the vertical line intersects the
{ ,

: L: computer deficiency horizontai line is the expected PCF It2" The value shown

i on this curve is then multiplied by the square of the mission time to get the

: expected probability of a potentially catastrophic failure. .
2

• i (
t_ Am example of using tradeoff figure to get an accelerometer self-test

requirement would be: Given mission time of 5 hours (t 2 = 25) and given

: i!: PCF = 1.25 x 10"7/flight, PCF/t2. -- 5 x 10"9. Assuming computer self-test
• .

deficiency = . 05 and gyro self test deficiency = . 035, you need accelerometer

f_ self-test effectiveness = 75% I. 25 self test deficiency).

{!

L
i

U

33

i

1976008973-042



I 1 I
I t I I
j , 1

SECTION 4

LASER GYRO FAILURE DETECTION
AND ISOLATION

The laser gyro, a recent development in optical technology, combines

, the properties of the optical oscillator, the laser, and general relativity to

produce an integrating rate gyroscope. Remarkable features of the laser

, gyro include the absence of a spinning mass, simplicity of construction, in-

herent digital output, an5 capability of wide dynamic range with high resolu-

tion and accuracy.

The laser gyro concept is based on the principle that the distance around

a closed optical path in a rotating frame of reference depends on the direc-

tion the path is traversed. For example, a beam of light traveling _round a

path in the direction of rotation will have to travel further than one traveling

against the direction of rotation. This difference in path length is proportion-

al to the rate of rotation and can be used to measure angular motion. In

general, these path-length differences are exceedingly small and could not be

measured before the advent of the laser. For example, a triangular laser

gyro having a 50-cm path, rotating at 10 deg/hr would produce a path length

difference of 10 -4 Angstroms. _

The ring laser converts this path-length difference into a measurable

frequency difference because the frequency of laser osciltation depends

directly on the distance around the resonator. A 50..cm ring laser oscillating

at 5 x 1014 Hz would give a measurable 10-Hz frequency difference for an in-

put of 10 deg/hr. The light leaking through one of the laser mirrors is used

for obtaining the rotation information. The counter-traveling laser beams

are combined by a simple optical system into an interference fringe pattern.

The motion of this fringe pattern gives information on both magnitude and

direction of rotation.

!:
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Honeywell has emphasized laser gyro design factors that minimize any

_: disturbance in the measurement of these small path differences. This has

led to the use of ultra-low-expansion CerVit glass ceramic to form the stable

_' ring laser structure that establishes the basic path length. This material

has a very low temperature coefficient of expansion and is compatible with

; _': the hard-vacuum technology required to generate the laser light source.

"" CerVit is also characterized by low helium diffusion which is required for a
!

_, long-life, stable laser.

-. There is a lock-in phenomenon associated with the two counter-traveling

i i l laser beams. When the frequency difference between the two oscillators be-

comes low, on the order of 1000 Hz, the two oscillators are "pullea" in fre-

_ quency towards each other. This pulling is caused by coupling which occurs
at the mirrors and is a function of backscattering of light. An oscillating

. mechanical dither technique is used to substantially reduce the amount of

time the gyro is in the lock-in region, thereby reducing the lock-in error.

I

!: The GG1300 laser gyro is shown in Figure 14. The required electronics

are mounted inside of the gyro case where they are protected from the en-

! : vironments. The CerVit block is shown attached to the center post by clamp-

ing springs used for oscillating mechanical dither lock-in compensation,

The laser gyro has been divided into six functional areas for a reliability

analysis. These areas are shown in the functional block diagram of Figure

_ 15 and are:

• Readout assembly • Case assembly

;" • Block assembly • Dither assembly

• Current control • Path length
I •

L-
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Figure 14. - GG1300 laser gyro

Laser case assembly

assL_11hly

Laser C,yro
i

',

Figure 15. - Laser gyro reliability functional block diagram
¢i
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Readout Control Circuitry

Description. - The laser gyro has two laser beams, one propagating

clockwise around the cavity and the other propagating counter-clockwise.

The two beams are optically combined outside the cavity into a fringe pattern.

The motion of the fringe pattern is detected by a dual-photodetector, ampli-

fied and converted into a pulse rate. A logic circuit separates the gyro out-

put pulses into two groups, one group proportional to clockwise rotation of

the laser gyro, and the other proportional to counter-clockwise pulses. This

raw output is then buffered by line drivers. The block diagram of the readout

circuitry is shown in Figure 16.

Channel A Slgr_1 Channel
detector A sine

), .:

'_ _1 Line CW

_ ('_,/ 4__F A "_ _'_ pu,ses

driver

Photo I pulse converter
sensor Differential Voltage

I ! Later amplifiers comparators.. ! beams

/'_ /-_ B Line CCW
_ driver pulses

' [i- Channels

;' detector g sine

! Figure 16. - Gyro readout circuit
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Analysis of the readout _ircuit reveals the following:

• The sum of the gyro CW and CCW counts is equal to or less

than the counts measured at e_ther of the photosensor channel

outputs which feed the logic (points A and B on the logic block).

• The counts measured at A may or may not equal the counts

measured at B. t

The fun,_tion of the logic and pulse converter is best understood by use of i i
a four-quadrant state diagram (Figure 17) ....

I

Figure 17. - State diagram

A CW pulse is generated any time the (0, 1) (1, 1) and (1, 0) states occur

sequentially. A CCW \mlse is generated any time the (1, 0) (1, 1) and (0, 1)

states occur sequentially. This latching arrangement reduces the generation

of unnecessary CW and CCW counts due to small oscillations about the input

axis. The states refer to the signal levels coming to the logic and pulse con-

verter (Figure 16) and are generated in accordance with the following dia-

gram.

38
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',i o,oo,11,1 o,o

i_! ' i i i '
I ! _ i I
I I I I I

i i! , ,
, levels 0 I I

1 CW pulses

/ ! I !I _- ,0 CCW pulsc_

Reliability. - Table 2 summarizes the work done in each functional area

i i to determine its applicable failure rate, This failure rate is determined by

i summing the individual component failure rates. Failure rates are generally

: expressed in percent per 1000 hour_ where 100% per 1000 hours equals one

failure per 1000 hours.

Table 2 shows the elements included in the determination of the failure

rate ( _oo ,%,/lnn0 hrs) for the readout circuitry or twice that for a redundant

readout circ_t (1. 196 %/1000 hrs).

i. Failure Detection. - The gyro output (clockwise pulses and counter-
clockwise pulses) may be partially validated by external checks performed by

! i' the computer, The output is a function of input rate and without knowledge of

the input rate the output cannot be checked for accuracy as it may vary up to

: plus or minus several hundred thousand pulses per second. However, there

i is a phenomenon around zero input rate caused by dither spillover which is a

function of the misalignment between the mechanically dithered quartz blocki

I and the pickoff. The physical motion produced by the mechanical dither

motion is a few thousandths of an inch and is not apparent to a human observer.

This dither angle must be removed from the readout as it can produce uncer-

tainties in the output angle, limit the time between accurate measurements,

or cause computer errors to be introduced.

i The dither angle is removed from the gyro output by design of the gyro

' ! readout optics which removes this dither angle, instant by instant, from the

; gyro output.

i!
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Laser Block Assembly

i Description. - The structure and function of the Honeywell GG1300 laser

gyro block assembly is set forth in the following paragraphs.

I The two main elements of the ring laser are the resonator and the ampli-

, tier. In the solid-block design, the resonator contains only two elements, _!

i the mirrors and the aperture. The ring laser cavity is generated by a set of :_
q

I three mirrors placed to form a closed optical path that is an equilateral tri- •

angle. All three mirrors have the same reflectivity. In this approach the .:

i ring laser geometry is precisely defined by the solid block.
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_ -- The gyro readout is shown in Figure 16. The readout corner cube is
w :

_, placed so that the CW beam i. superimposed on the CCW beam at an angle

"_ .._ controlled by the wedge angle of the readout mirror. This creates the fringe

o pattern shown and permits up-down counting of the output phase difference of

:, the two oscillators.

mm

The readout corner cube prism which translates and returns the laser

T" output is fixed to the gyro base. The gyro readout mirror therefore moves

_ with respect to this prism. The path length in the readout system is in-

-- creased and decreased as the two elements move with respect to each other.

_. By dithering the gyro about a point slightly removed from the center of the

.. gyro, this path difference in the readout is made equal and opposite to the

! fringe motion created by the gyro oscillator phase changes. The cancellationtw

is instant by instant, with the readout detectors thus "seeing" a fringe motion

equal to the base motion of the gyro with a small residual dither amplitude.

The resid_ml dither motion (uncompensated dither) is defined as dither spill-

_ over.

; _r Figure 18 is an input/output curve which illustrates the effect of dither

:: -- spillover on pulse count. Dither spillover is normally adjusted to be below

_ ,. +1.0 count per cycle. For this scheme it would be ad'usted between. 5

! _ counts/cycle and I.0 counts/cycle. For a positiveinput rate near zero, the

_ CW pulses do not vary as a function of input rate, but remain constant v;,nle

!r, _ the actual input rate is determined by subtracting the CCW pulses from the

!_, CW pulses for a given time period [_ (Pcw - PCCW )]" The same is true

ii_ for the CCW pulses and a negative input rate. This phenomenon is very use-

#m ful in detecting failures, inasmuch as zero pulses during a given time period

!_ doesnotmeanzeroratebutafailure(Figurel9).

i: Appendix C contains descriptions of various readout configurations of

,, which two provide redundant readout circuitry. For these configurations, the
,_ computer can compare the multiple readouts to ensure the circuitry is work-

|_ ing correctly.

41
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Figure 19. - Pulses/time versus input rate
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_. Appropriately" drilled holes permit passage of the oppositely-directed

,. traveling waves. _1hese holes serve as apertures and, when filled with a low

pressure of heli,Jir, and neon, as gain tubes. A single large cathode and two

anodes establish the split balanced d-c discharge. This permits precision

gain control ant _rimming of null offsets.

'" The optical path length is precisely controlled to an integral multiple of

; the lasing wavelength by a piezoelectricallydriven transducer mirror. Con-

_. trol is maintained to t!_= peak laser power for optimum performance and

:. temperature capability.

4_

The light leakage through the multilayer dielectric flat mirror is used for

obtaining the rotation signal. The two beams _.re folded together by a simple

optical system to form an interference pattern on a dual photosensor. The

:: cube cor_er is mounted to the base, producing a signal that exactly counter-

"" acts the gyro-_reated dither signal. The net readout is therefore the true

- • rotation of the gyro in inertial space.

.

• Gyro dither is obtained from a very simple piezoelectric motor. PZT

elements are bonded onto both sides of the reeds of the dither spring which

supports the block. Acting push-pull, the PZT elements create bending

moments in the reeds and create an oscillating input (dither) to the ring laser.

Reliability.,. Table 2 shows the elements included _n the determination of

the failurerate (2.454 _0/I000 hrs) for the block assembly. This includes a

2_/0failurerate per 1000 hours for the cathode life. The wearout mechanism

i that limits lifetimein the laser gyro is the gas pumping action of the cathode.

To sustain the laser gas discharge, positiveions collideto provide electron
i

emission. Some ions are trapped during this process, and other gas atoms

are buried by the sputtered cathode material. Thus, when the discharge is

run, a small amount of heiium and neon is pumped by the cathode. Over a

period of time thisresults in reduced gas pressure and eventual gyro failure.

, Based on accelerated life-test results, estimates for the wearout life due to

cathode pumping is 50,000 hours. *
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Based on accelerated life-test results, estimates for the wet.rout life due to

cathode pumping is 50,000 hours. *

An approximate equivalent MTBF for gyros having both a random and

wearout (normal) failure distribution can be computed using the following

equation:

1 (1-e -hT)
(MTBF)equivalent = _-

where

h = random failure rate

T = mean in hours of wearout distribution

Using 2.99% per 1000 hours (random) from Table 2 and 50,000 hours

(mean life) for the laser gyro yields an MTBF of 25, 900 hours, A 20,000

hour MTBF is indicated by Table 2 if no distinction is made between random

and wearout failures. The more conservative of the two estimates is used in

the report.

Failure detection. - The integrity of the laser block assembly can best

be monitored by analyzing the channel A sine and channel B sine signals

(Figure 16). The presence of a sinewave signal on both channels indicates

that an interference pattern is being generated internally in the block and is

being sensed by the photosensors. The contrast or amplitude of the signal

will decrease if the gas in the block be=omes contaminated or there is a leak.

A faulty pickoff, in terms of an alignment shift or mirror deterioration,

would also reduce the amount of signal. When the amplitude of the signal

drops below a predetermined level, s failure is imminent.

I_wearo_ due tocathod'epumping was reported as 30,000 hours in CR-
137585 ("Strapdown Cost Trend Study and Forecast"). This figure has
now been revised to 50,000 hours based on ongoing tests. "

i
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._ .. The present channel A sine and channel B sine signals are brought out

,. with an RC circuit which is valid for monitoring to about i0 kHz, beyond

which the output drops off, Isolation amplifiers and level detecto_'s would be

i substituted for the RC networks to prevent high-frequency roUoff to provide

fault detection over the complet_ operating range.

Current Control Circuitry

' Description. - The laser gyro discharge is initiated by applying a high-

.. voltage d-c potential between the anode and cathode. This voltage, typically

twice the operating potential required to sustain the discharge, is sufficient

to cause ionization discharge within several milliseconds after the circuit is

energized, After discharge is initiated, it is immediately regulated by the _

current control circuits.

Discharge current control is required to stabilizegain and to balance
i

the two discharge current paths. Variations in totalcurrent cause gain

changes and result in a small scale-factor variation;variation in the current

balance results in a null shiftin the gyro output.

Figure 20 shows the design of the discharge current control• Laser

gyro configurationshave one cathode and two anodes so thatthere are two

distLnctcurrent paths in the gyro discharge.

Differentialdischarge current control is accomplished by a FET cont_ol

i, element in each current path. The totalcurrent (I1 + 12)flows through the LI

bridge which measures the differentialcurrent (I1 - 12). The current unbal-1

ance (II - 12)is sensed by a differentialamplifier. The output signal of the

amplifier drives the FET transistors, maintaining a given current balance

i J.i in the presence of disturbances.

_ T
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q Reliability. - Table 2 shows the elements included in the determination
of the failure rate (, 3345 _/0/1000 hours) for the current control circuitry.

: Failure detection. - Total current (discharge current) is monitored to

determine that the operating point o.f the laser gyro has not shifted. A shift

i in operating point is indicative of a change in the gyro bias. Currents

I1 and 12 are monitored to make s1_rethe control loops are working and not
driven into saturation.

i Case Assembly
° •

! ) Description. - The case assembly is sealed to protect the laser block

and electronics from environmental contaminates (dirt, salt, moisture, etc. )

' and to provide an internal gas pressure which does not vary with altitude,

"" thus minimizing high-voltage arcing problems.
/.

_- The center post of the case assembly must support and maintain the

_lignment of the laser block relative to the case mounting surfaces.

Reliability. - Table 2 shows the elements included in the determination

_ of the failure rate (. 0756 _0/1000 hr) for the case assembly.

Failure detection. - The most probable failure modes of the case involve

failures associated with the case seal and the connector. These failures sub-

. sequentlyproduce failuresin the gyro electronics, and a case seal failureor

a connector failureis detected when the electronics failureis signaled. The

, ¢_iI . high-voRage circuitryis the most sensitiveto itsenvironment, and a case

• seal failure would probably affect this circuitry first, The self-test capabili-

ty cf the case is equated to the self-test capability of the high-voltage current

control circuitry. Table 3 shows the monitors relativeto the gyro para- '

' meters. A case seal failure would eventually manifest itself in a failure of
e_

L/ or which are monitored.It , [ 1 , 12

,• 47 1
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TABLE 3. - MONITORS VERSUS PARAMETERS MONITORED

Monitor Gyro parameter monitored
i,

Laser block assembly monitor

Channel A sine Presence of laser fringe pattern
Contrast of laser fringe patternCharnel B sine
Determines pickoff integrity

Readout assembly monitor

External gyro output Checks readout circuitry

Analysis Determines presence of dither spillover
(rates 360 °/hr) .

Dithe_ monitor Determines that dither loop is working

Path-length monitor Determines laser path is an integral "-
number of k's (beat frequency)

Laser case assembly and IT value _onfirms proper lasing operating
current control monitor

point

I 1, 12 values confirm that current control

loop is working satisfactorily

L

¢,!
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Path-Length Co_trol Circuitry

• .

Descril_tion. - Length control of the laser cavity is necessary in inertial-

/ grade gyros principally because of thermal effects that caus. =. £he laser cavity
.r;

' to change length when wide thermal environments are encountered. Also, the

i ;_ initial set point must be controlled. Uncontrolled changes in length cause

! "-" changes in scale factor and null, reducing the ultimate accuracy.
i ,

; ' [ Length control is accomplished by a control circuit operating on the in-

_' tensity of the laser beam. The variation of the laser output intensity with

{_ cavity length is characterized by a maximum near doppler center and a de-

crease in intensity on either side (see Figure 21). This pattern repeats as

: , modes are scanned (frequency tuned) by a variation of cavity length.

?

- - Intensity

L;

Cavity
_: length

L -_, L L+_
i

_ _ Figure 21. - Single-beam intensity versus cavity length
i.J

Stabilization of cavity length requires generation of a length reference

,¢. point and a measure of the deviation from this point. The maximum of the

_ laser intensity curve is used as a length control reference.

Deviations from this maximum are measured by a small modulation or

dither of cavity length. The small modulation of length produces a small-

intensity modulation which bears a fixed-phase relationship with r_.spect to
the applied dither signal. In addition, this phase relationshipchanges by

49
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180 degrees in going from one side of the intensity maximum to the other.

As a consequence, a discriminant is generated for use in closed-loop control

to stabilize the cavity length.

Figure 22 illustrates the design of the length control. " "

gym Ibeam _ sens°r H Amplifier HDem°dulat°r ]_ ""

I Oscillator I _ :i

'transducer voltage
andmirror driver I

Path '
length ',
monitor

Figure 22. - Len_h control

The cavity length is controlled by a piezoelectric transducer which dis-

places one of the laser gyro mirrors. The length dither has an amplitude

equal to a small percent of the mode spacing. It is generated by the oscillator

and applied to the mirror .hrough the piezoelectric transducer. The ampli-

fied photosensor signal, derived from the variation in intensity of the laser

beam, is applied to a phase-sensitive demodulator which receives its refer-

ence input from the oscillator. The resulting d-c signal is proportional to

:: the deviation from intensity maximum and has a polarity which depends on

! which side of the maximum the operating point is located. This u-c signal is

, used as an input for a high-voltage driver which applies de to the piezoelectrici

5O
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transducer. In closed-loop operation, the length control operates as a null-

seeking system to stabilize cavity length at the intensity maximum. In the°

presence of cavity length disturbances, the d-c voltage applied to the piezo-

" electric transducer changes to keep the cavity length constant.
• J

* Reliability. - Table 2 shows the elements included in the determination

' ' of the failure rate (. 6045 %/1000 hours) for the path length control.

; , '" Failure detection. - Figure 22 shows the monitor for the path length

: _ _ - control. The path length servo loop is considered to be working if the path

, ! length monitor voltage does not go above 5 volts (10 volts is saturation). A

: level detector is adequate for this monitor.
t

{. _,*

i l Dither Control Circuitry

i i :: DescriPtion. - To improve the performance of the laser gyro, a mechan-

' [: ical rotational bias is introduced so that the gyro operates outside the lock-

/ in region. The bias technique consists of physically oscillating (dithering}

i _ the laser gyro about its input axis. The amplitude of this oscillation or dither

! t is typically 200 to 400 arcseconds. The frequency is approximately 200 to

' ! 400 Hz.

V_ The operation of the bias system is shown in Figures 23 and 24. Thei', }.

laser gyro, constructed as a solid quartz block, is suspended from the case

• _ i.' by a set of cruciform springs.

'_ _ A d-c torquer is attached to the suspension mechanism and the case, and

i ..i': provides the driving force for generating the sinusoidal bias. The inertia of

• the quartz block, together with the spring constant of the suspension, consti-

,_ tutes a mechanically resonant system.

_, The dither drive electronics have the function of dithering the gyro and

controlling the average amplitude of this drive.

51
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Drive Torquer Suspension Laser gvro
electronics ._

Dither ""
sensor _ i

Figure 23. - Dither drive ,,

i

_t

o J

Randomsignal
..L

Feed #

forward ,,

Dither Pre-amp Clipper Filter
sensor

Torquer

Dither monitor

Figure 24. - Dither electronics

s
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+- Reliability. - Table 2 shows the elements included in the determination

_.' of the failure rate (. 33 _0/1000 hr) for the dither control circuitrv.

_ Failure detection. - Figure 24 shows the placement of the dither monitor

which senses the presence of the a-c dither signal. The c_rcuit is not work-

i ing if the signal goes to zero or to a steady-state d-c level.

r_

. Gyro Failure Detection

i. The laser gyro design (supplemented v_ith a redundant readout) lends it-

self quite readily to built-in-testing monitors. Table 3 summairzed the
r

' monitors along with the specific gyro parameters that are monitored. These

parameters and monitors have been discussed previously.

i
:- Table 4 summarizes the self-test capability of the gyro (in this instance,

self-test also includes a computer test of the redundant readout). The moni-

.. tor description, calculated failure rate, and estimated effectiveness are

shown for each of the gyro elements. The gyro test effectiveness are esti-

, mates based on similar self-monitoring techniques and circuitry from 7X7

and JA 37 digital autopilot programs. The specific self-test effectiveness

: numbers must be determined from a FMEA on the specific mechanization.

(Typically a monitor has a single thread failure mode which precludes 100%

effectiveness. )

Monitor effectiveness is approximately 95_0 for monitors which are acti-

!, vated when a given signal deviates from a nominal by a specified percentage.

Examples are the monitors which monitor the laser block assembly, laser

case assembly and the current cnntrol. Monitor effectiveness is increased

to approximately 99% where a signal is driven to a maximum because a con-

trol loop is no longer controlling.
+ .

• If the readout assembly is a redundant function, it can be checked exter-

"" nally by the computer. The effectiveness of this check approaches 100_o.
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TABLE 4. - GYRO SELF-TEST SUMMARY ._

Est:lmated '"
Calculated

: Gyro Monitor monitor
- element description effectiveness, failure rate, --

% %/1000 hrs .,
HH

,, ,, , =

_ Laser block Sine wave n_,g 0 2, 4 54 ""
_ assembly amplitude detector .,

Redundant Computer .,
readout test 99.9 1. 196 _J

assembly "'

Laser case Current control _'

assembly monitors case 95.0 .076 .,
integrity

b_

Current Voltage level 95.0 .335 -,
control detector

Path-length d-c max amplitude 99.0 .605
control detector -.

w,

Dither a-c max amplitude 99.0 .330
control detector o.

.. ,,.

Figure 25 shows the gyro failure model diagram. The validity monitors

shown must be designed so that the probability of their failing is very much

less than the probabilityof the self-testbeing inconclusive. ""

The laser gyro technology is new, and, as such, there is an incomplete "'

knowledge of all the possible failure modes. Undoubtedly variations in the •.

design of the monitors will be required as further work is accomplished and _.

as more information becomes available.

The undetected gyvo failure rate is the sum of the individual gyro assem-

bly failure rates times their respective monitors' self-test inconclusive fac-
u

tor. In this manner, the total _,_c_._,,,..__--*-'...... a_ of the._ gyro self=test is calculated

at 96.5%,

j,
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SECTION 5

SINGLE-CHANNEL COMPUTER FAILURE DETECTION
AND ISOLATION

One of the basic mechanisms that makes strapdown inertial systems

attractive is the ability to utilize the strapdown computer to time-share

a number of different operations during a given computation cycle, This

property also provides the system with a method to perform self-monitoring,

since a portion of each computational cycle can be dedicated to verifying

the proper operation of the system while the remaining portmn of the cycle

is used to perform the normal functional computations. Self-monitoring is

performed to some degree on .most digital systems to aid in fault isolation

for maintenance. In this application, in-line monitoring or self-test is a

key element in meeting reliability requirements.

To provide a high degree of fault detection and isolation (i. e., approaching

99 percent) with a self-monitored system, a concept using "selective redund-

ancy" may be necessary. That is, any critical portions of the system that

cannct continuously be self-tested must be redundantly mechanized and moni-

tored. Continuous self-testing in a digital system implies periodic self-

testing at a frequency sufficient to prevent a catastrophic system failure

from occurring between tests. In the case of the flight control signals, a

failure must be detected within milliseconds.

This section does not address the determination of criticalityof functions

or any tradeoffs involvingalternate redundant configurations, but does assume

criticalfunctionswill be redundant where necessary. For example, ifa

transmission lineto another device is critical,sufficientparity/format

checks will be incorpo2ated or a dual line provided that can be comparison

56
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.. monitored upon receipt by the device. This section primarily dlscusses

in-line or self-monitoring teclmiques generally applicable to each channel of

the dual-computer configurations. A qualitative evaluation of the self-test

effectiveness is also provided so that the general feasibility of the approach

can be evaluated against given system requirements.
b .

-- Computer Definition

The tetrad computer consists of the following major functional elements:

' digital processor (CPU), memory, fault detection/reaction logic, input/

output (I/O) control logic, and I/O functions. For this study, a Honeywell

HDC-301-type general-purpose medium-speed digital processor is assumed.

The CPU not only performs the necessary signal processing calculations

but also controls all input/output via the I/O control logic. The intelligence

necessary to direct the CPU is provided by the memory. The fault detection/

reaction logic provides the fault reaction signal if a failure is detected and

also acts as a detecting element for computer hardcore failures. Hardcore

• failures are those failures in the CPU, memory and I/O control that may

prevent the failed computer from detecting its own failure.

The I/O control logic receives address and timing commands from the

: CPU, processes these commands through decoders, and provides output

"" commands. These commands select the proper input or output signal to

:" be processed and performs the multiplex switching and control for these

_- signals. I/O functions contain the circuits to provide conversion of d-c,

_. o-c, discrete and digital inputs and outputs. Figure 26 shows the general

! computer mechanization to be considered Included in this diagram are

the built-in test wrap-around signals that may be necessary for self-test.

i
_,,
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Computer Failure Definitions

In the following discussion, six functionalfailuremodes for the tetrad

computer are defined. The major contributors to each mode are presented

with a brief description of their impact on the failure mode. The six func-

" " tional failure modes are: computer hardcore failures, memory failures,

fault detection/reaction failures, CPU operational failures, multiplexed I/O

failures and dedicated I/O failures.

Computer hardcore failures. -Computer hardcore failures are defined

as those failures that will prevent ti.e CPU and associated I/O from detecting

its own failure and taking corrective action. Among these failures are those

modes that result in a dead or inoperative/erratic computer. The major

contributors to this failure mode are portions of the power supply, r mory,

I/O control and CPU.

An obvious contributer to computer hardcore failures is total loss of

power. With no power, the CPU is incapable of performing any self-test.

Less massive power losses can also cause hardcore failures such as partial

loss of power _, the CPU, I/O control, or fault reaction logic. These failures

can cause the CPU to stop or render it incapable of communicating with its

I]O. Massive memory failures will also prevent the CPU from performing

useful self-test or taking corrective action. Among these failures are: dead

memory, dead memory buffer control to the CPU, loss of addressing lines

• that prevent access to large blocks of memory, and inoperative instruction

.. lines to CPU which scramble the CPU instructions. Many failures in the I/O

control logic will prevent the CPU from reacting t_ known failures. Among

; these are any failure that prevents the CPU from communicating with the

fault reaction logic.

¢
A.

Some CPU failures will also cause hardcore failures. Among these are

: the functions involving the program counter, addressing control and operation}

! [: 59
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code decoding. Failures in the program counter functions of the CPU will

prevent it from performing proper instruction-ietch sequences and will

result in erratic CPU operation. Failures in the addressing control functions

wil! prevent the CPU from properly performing jump and branch instructions,

and t_ilures in the operating code decoding prevent the CPU from properly

interpreting the instructions from memory, and, again, erratic operation

will result.

Memory failures. - Memory failure modes other than the massive types

described above are dependent on the type of memory an,_ mechanization.

The following general failure modes apply to most memory types: address

control line failures, bite failures, bit failures. Address control line failures

are those failures that either prevent access to a block of words or cause

multiple access (more than one word in one fetch) to a block of words. These

failures will result in a scrambled portion of data or" instruction memory.

The size of the failed blocks are dependent on memory mechanization but are

typically 32 words or more. Bite failures are those failures that result in

failures iu portions of all words within a block. For instance, bits i through

4 of all words are inoperative. These failures are more common to semi-

conductor memories and are a result of inoperative memory chips. Bit

failures include all those that result in any single bit in data or instruction

memory failing. These failures will result i.n one bad instruction or data

word.

Fault detection]reaction failures. - The fault detection/reaction functions

are safety-critical portions of the computer. The fault-detection portion of

these circuits are included to detect hardcore computer failures when the

CPU and I/O are incapable of detecting failures in tnemselves. Because of

the importance of these circuits to flight safety, an extensive failure modes

and effects analysis is performed for each application. In general, these

circuits are designed to be highly reliable, fail-safe and testable. The fault

reaction portion of these circuits are also safety-critical, and again, extensive

l
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, .. failure modes alld effects analysis is performed for each application. These

circuits are also highly reliable fail-safe, and testable• Failure ef these

functions, along with any computer or sensor failure could result in an

: unsafe condition.

CPU operational failures. - CPU operational failures are those CPU

; failures which result in partial loss of CPU capability. Among these are:

" i _ accumulator failures, I/O control failures, data register failures, adder

. carry failures, etc. _Ihese failures will result in improper operation on

,', data or 110 devices. As a result, some or all computations performed by

the CPU will be in error, even though the processor sequences properly

i. through its instructions.

.

i_ Multiplexed I/O failures. - Multiplexed I10 failures are failures in the

"" control circuits that result in partial or complete loss of an I/O function.

: i! For examp, . if a switching chip analog input I/O should fail, an entire

i_ i . group of inputs would be inoperative. Similar failures exist for all I/O

: , pDrtions of the computer.

_ Dedica_,ed I/O failures. - Dedicated I/C failures are failures that affect
' 7

"

. only one inpu_ or output. If these signals are safety-critical, they must

• eiLher be testable or redundant.

_ Self-test Hierarchy

The computer control functions flow from the CPU to the I/O control

I and finally to the dedicated I/O. Because o.f this hierarchy of control, the

following self-test approach is preferred:

• Ensure that the computer is capable of reacting to a failurei:
j within itself.



t I
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• Ensure that the memory is intact so that testing can ,

be performed. ..

• Ensure that the CPU can properly process data and

evaluate test results.

• Ensure that the CPU can control the I/O so that it

can be tested.
• o

• Ensure that the critical interfaces are operational. ""

If the computer is capable of reacting to a failure within itself, it can

then be used to see that its memory is intact. Given these, the computer

has the intelligence to perform testing functions. The CPU can now perform

3elf-tests on itself to check its data processing capability. Given these

functions, the CPU can be used to exercise the I/O circuits and evaluate

their operation. The following subsection discusses various techniques

that can be used to perform self-test on a digital computer system.

Computer Functional Test Descriptions

Monitoring and testing of the computer for hardcore failures is provided

by circuits that do not require a functioning processor or memory to give

failure warning. Typical systems will use one or more watch dog timers

and possibly a dynamic computation monitor if detection in excess ,)£ 98%

is needed.

Watch dog timer. - The purpose of the watch dog timer (WDT) is to

protect against central processor or memory failures which prevent execu-

tion of a computation cycle in the prescribed period of time. It is designed

to provide this protection without dependence on processor or memory

functions. The essential element is a monostable slngle-shot flip-flop which

62
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_ has a high output state for about 204 longer than the basic computation cycle

after receiving an update pulse. A low output state disengages the DAFCS

servos directly through hardware logic. To maintain system engagement,

the DAFCS servos directly through hardware logic. To maintain system

engagement, the DAFCS program checks that the WDT is not failed and

then issues an output control pulse to update the flip-flop once every compu-

tation cycle.

Dynamic computation menitor. -The dynamic computation monitor

(DCM) provides an independent a,_dcontinous test of CFU capabilityto per-

form continous control functions. The concept defines a relativelyprecise

control functionwhich must be performed on an analog element by the CPU

+ and I/O. The analog element to be controlled is an operational amplifier

integrator. The objective of the control law contained in the software is to

produce a stable +5-vdc time-dependent triangular integrator o,,tput. The

DCM control law also maintains certain similarities to the LINS computations.

• Exercises AID and D/A conversion.

• Sample inputs and outputs a command at fixed rates.

• Exercises much of the instruction repertoire used by

LINS computations.

• Relies on the real-time synchronism for maintenance

of a precise computation interval.

• Uses CONSTANT and SPAE+ memory.

} The integrator output is monitored by dedicated hardware for peak

' values both above and below nominal. Failure to exceed a 4.4-vdc me.gnitude

at least every computation cycle causes disengage. Exceeding 5.6-vdc mag-

nitude at any time also causes disengage.

/l " •

°
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Because thc WDT or DCM do not require a functioning processor or

memory to cause a disengagement, they are also relied upon for that

function when failures are detected by other processor or memory monitors.

In those cases, failure detection causes the computation flow to jump to a

"fail loop" which prevents update of the WDT and DCM.

Memory tests. - Two basic memory testing schemes are in general use

to test computer memories. These are parity and sum checks. In a simple

single-bit parity _cheme, each word sent to memory is routed through

circuitry which first checks parity and then adds a "one" to the parity bit

in each word if necessary to achieve odd parity. When any word is accessed,

Jt is checked for correct parity by dedicated circuits, and, if an error is

detected, a processor interrupt is immediately performed. Multiple-parity-

bit schemes are available if additional checking is necessary. Among these

are one parity bit per chip used to form a word and one parity bit for each

bit in a chip to form a word. If two eight-bit chips were used to form a

sixteen-bit word, the first multiple parity scheme would require two oarity

bits and the second eight parity bits.

Memory sum checks are used to protect again: "_rdware failures in the

memory, memory interface, or processor which c_ actual or effective

changes in the contents of critical instruction or data memory locations. A

"critical" instruction or data is defined as one which can have significant

effect, from a safety viewpoint, on the output signals.
• .

The concept is to treat the contents of a given block of critical locations

as data, and compute the sum of the contents of all locations in the block•

This sum must then compare ex_otly with a precomputed check sum stored

in data memory. Failure to compare, leads to failure warning via the CPU.

SPAD memory sum checks protect against failures in the memory,

memory, interface or processor which cause actual or effective cbanges in
' critical SPAD locations.
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,o Since the contents of SPAD locations arc variable, the following sum

.. check concept can be used: Each critical SPAD variable is double stored;

' i.e., the A register contents are stored in both a primary and a secondary
sr

SPAD memory location. The primary location is used in computations on

subsequent passes through the program. The secondary location is used

_ "" only for sum checking. The sum check routine effectively adds the primary

" locations, subtracts the secondary locations and checks for a zero result.

-- Failure warning is provided by the CPU if an error is detected.

Fault detection/reaction tests. - Because of the safety dependence on

the fault detection/reaction circuits, a means of testing them is needed to

ensure that no latent failures exist. These circuits are not normally tested
- p

continuously during flight because failure indications are usually latched

to prevent transient resets. However, if the circuits are sufficiently fail-

safe and reliable, a thorough automatic preflight is sufficient to provide

"" safe operation. Testing usually consists of stim/measure and timing tests

_- which check all components in the circuits. For instance, the watch dog

timer is updated and then checked for not-time-out and timed-out at its

.. minimum and maximum intervals,

t

CPU operational tests. - Monitoring of the operation of the _entral

processor unit (CPU) is primarily performed by a set of special software.

The basic CPU operation can be continuously tested in flight. The functions

:, "" included in this test are:

e Data address lines of the CPU and memory
!

_; • Operation code decoding _.

_- . Information transfer to the A and B registers

I; • Logic instructions

• Shift and rotate instructions

. • Load and store instructions !

' f ' 65
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• Arithmetic instructions

• The accumulator

• Indexing

• Branch and return

• Conditional and unconditional jumps

• Special circuits

If a failure is detected by the CPU, a jump to a "fail loop" is executed.

Power supply tests. - The computer supplies which are critical to com-

puter operations can be monitored by comparisons against nominals.

The purpose of these tests is two-fold:

• To compare the supply outputs against predetermined

nominals and tolerances.

• Since these are known-value analog inputs, each of which
_ can be wired to a different bank of the multiplexer, an

inherent test of the analog I/O and analog-to-digital

converter is performed.

Bite-the-tail tests. - All analog and discrete outputs are tested using

a technique that has been labeled "bite-the-tail". Outputs are fed back to

the input and re-entered into the processor through the appropriate input

channel to be compared with the commanded output (to a suitable tolerance

in the case of analog outputs). This type of test ]ms the advantage of being

an end-to-end check of the input/output since almost all of the circuitry is

exercised by performing such a test.
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Digital I/O tests. - Digital inputs and outputs are checked by means of

a parity bit attached to each word at time of transmission and checked at

time of receipt at the destination• This circuitry contains the multichannel

digital interface.

Multichannel interfaces perform the following functions:

• Real-time synchronization between the redundant

channels

• All data exchanges amon, the redundant c:hannels

• Majority output or differential (digital) voting if

desired

The real-time synchronization is necessary to ensure that all redundant

channels are running the same problem so that their results can be com-

pared. Data exchange is utilized primarily on inputs so that comparison

of inputs can be performed prior to the computations. Because of com-

parisons within each computer, the interfaces are self-.checking and no

or little additional testing is necessary.

Dedicated input I/O tests. - The dedicated input I/O can be tested to

some degree by providing stim signals from the computer to the input

device. These tests usually require special dedicated hardware for each

input to be tested. Continuous testing is usually not practical and therefore

testing is limited to preflight only. Inflight tests are sometimes performed

by using reasonable tests on the input signals.

T'
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,_ C o.,nputerFailure Model

In an actual system application, a detailed failure modes and effects

analysis is necessary to arrive at a detailed failure model. Included in a

detailed model would be: programming restrictions to prevent use of not-

tested CPU functions, the effects of redundant signal paths, restrictions on

use of not-tested I]O control signal3, and failure modes unique to the appli-
!"

cation and mechanization. A general computer model is shown in Figure 27.

Previously, it was stated that the fault detection/reaction logic should be

designed to be highly reliable and failsafe. If this design is adequate, all

failure paths containing these elements can be ignored when making the pre-

: liminary reliability calculations. Tl.e system failure state then reduces to

the sum of probability of each failure mode occurring, multiplied by the

self-test ineffectiveness.

Self-test effectiveness is dependent on the design, failure analysis, and

failure testing effort. Numbers approaching 100_ self-test are possible if

considerable effort is made. This analysis and testing can easily become

man years if a highly testable system (98+_) is required. The task consists

primarily in defining all the possible safety-critical failure modes in the

• computer. In general, any failure mode that can be identifiec can be detected;

but have all modes been defined ? The parts count is high and it is especially

difficult to identify all of the conditional failure modes. Also, latent failures

are a potential problem.

Summary

Various proven techniques are available to achieve a reasonable self-

test effectiveness. This effectiveness is largely dependent on the effort
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spent on detailed failure modes and effccts analyses and testing. To prevent

unsafe conditions resulting from computer hardcore failures, some form of

watch dog timer or dynamic computation monitor circuits is required. Also,

selective redundancy may be necessary, particularly for critical I/O signals.

Table 5 summarizes the self-test hierarchy. Included are estimated

failure rates and self-test effectiveness values. The values are estimated

based on experience on similar systems and assume a failure modes and .

effects similar to conventional redundant systems. An overall self-test

effectiveness of greater than 93 percent is reasonable for the tetrad computer, ..

and this number can approach 100 percent given sufficient design and test

effort. The dedicated I/O circuJ.try is typically the predominent contributor

to the self-test ineffectiveness.

7O
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SECTION 6

IMPACT OF LASER GYRO FAILURE ON FLIGHT SAFETY

For flight occurring during LFR conditions, flight safety can be com-

promised by an undetected failure in any gyro which is part of a stability

augmentation system, attitude reference system, or ,avigation system.

The assumption is made that systems which provide a warning flag when

they have failed (fail-safe) do not compromise flight safety in short haul

aircraft because of backup systems of the same or differe ,t configurations.

For instance, the inertial navigation system could be backed up by radio

navigation (or vice-versa).

In a tetrad system, the first sensor failure can be detected at the

system level with a confidence approaching 100_. Consequently, the system

may be classified as a fail-safe system relative to the first sensor failure.

Subsequent paragraphs discuss the rational for stating that individual gyro

tests will identify the failed unit 96.5_ of the time permitting the system to

remain operational. However, an operational tetrad system with one gyro

failure is no longer a fail-safe system 100_ of the time, but is a fail-safe

system (relative to a second gyro failure) 96.5_ of the time.

Table 6 shows the effects of a failure in a functional area of the gyro.

For instance, a failure of the .aser case, laser block, laser readout or

laser current control would make the gyro inoperative and its error would

greatly exceed 360 deg/hr, which is typically the maximum error a stabil:ty

augmentation system can tolerate even in a degraded mode. Cousequent_y,

all boxes ass,_ciated with these areas are marked unusable (x). Loss of

laser dither and laser path length results in gyro performance which is not

usable for navigation but is usable (depending on the size of the error) for

stability augmentation and attitude reference.
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The undetected failure rate for a gyro in each of the ,'eferenced system is

shown in Table 7. Th_s is arrived at by multiplying the gyro failure rate and

the self-test inconclusive factor. The gyro undetected failure rate is essen-

tially the same for all three system functions, and the gyro undetected mean

time between failure is in excess of 700, 000 hours.

74

1976008973-083





SECTION 7

CONC LU SIONS

The failure modes of laser gyros and cnmputers were studied with

respect to the potential use of a tetrad inertial navigation system in short-

haul aircraft. This system was configured with two two-axis sensor channels,

each channel containing its own computer. In this configuration, any set of

sensor outputs c.,n be used to derive the equivalent output of an orthogonal

sensor triad.

The laser gyro was studied relative to the type of monitors necessary

•_ to iso__ate a gyro failure to a specific gyro within the tetrad system. In addi-

tion to the monitors, a redundant readout circuit in the gyro is consi¢_ered

necessary. The total potential effectiveness of the individual gyro monitor-

ing circuitry is estimated at 96.5%. Note" Actual verification of this num-

ber reouires a detailed failure mode and effects analysis with subsequent

: confirmation by actual hardware testing. An overall self-test effectiveness :

of 93% is reasonable for the computer and this rmmber can approach the 99

to 100% range given sufficient design and test effort. The dedicated I/O

circuitry is typically the predominant contributor to the self-test ineffective-

ne _s.

The most promising system redundancy management concept consists of

detecting the first sensor failure at the system level by analysis of the sensor

outputs and by detecting the first computer error by comparison of co.nputer

outputs. Isolation of the first failure was found to be as good as the individual

components (gyro and computer} failure detection capability.

For short-haul, aircraft, flight safety is assumed to be compromised

any ti _e a system fails and a warning flag is not activated. In the tetrad

system the first failure may be detected at the system level and a warning

flag actuated with a confidence approaching 100%.
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- Isolation of the failure, in the case of the gyro and computers, _an be

" [.. accomplished 93 to 96% of the time, thus permitting the system to continue

. operating _¢ith one failure. However, a tetrad with one failure reverts to a

I.i system which is less than 100% fail-safe.

T
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• . APPENDIX A

COMPUTER SYNCHRONIZATION

The computer hardware synchronization concept assumed for the study
• +

is shown in block diagram form in Figure AI. A 2-MHz oscillator in each

computer is used to generate a 125-kHz ISA data transfer pulse rate signal,

a 200-Hz data strobe ISA input cycle pulse, and a 40-msec {25-Hz) clock

: : pulse. The 40-msec clock pulse is compared with the equivale'at clock pulse

-- from the other computer channel to derive a 40-msec sync pulse used to

synchronize the computers, to reset and start the ISA input data timing

counters {200-kHz and 125-kHz clocks}, and to start the next 40-msec clock

time count.

The 40-msec clock pulses are transferred between channels and sub-

jected to the clock sy-lc generator and failure detection logic shown in Fig-

" ure A2. This logic generates a valid sync pulse when two pulses from the

individual 40-msec clocks occur within a prescribed time interval {r}, which

.. is derived from the 2-MHz oscillators, and reset each time a pulse is

received. If the time difference between the occurrence of the first and

second is greater than r failure discrete F, is generated. In either case,

a 40-msec c].ock sync pulse is generated that synchronizes the computers by

releasing them from a "halt" condition entered at the end of each 25-Hz

computation cycle. The derived 40-msec clock sync pulse also synchro-

nizes the 125-kHz, 200-Hz ISA data transfer timing signals and resets/

•" starts the 40-msec clock timer to generate the next 40-msec pulse.

.. The above operations occur simultaneously in each computer such that

,. both become synchronized to the same 40-msec clock.

e=
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Figure A1. - Computer synchronization concept
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81

I

1976008973-089



APP ENDIX B

TETRAD SKEWED GYRO VOTING AND
T R AN SF ORM AT ION EQU AT ION S

The derivation of a typical set of error equations to be used in the gyro

error detection/isolationroutines for the tetrad system is described in this

subsection. Itis assumed that the two sets of orthogonal two-axis ISAs are

placed such that each ISA has one input axis in the p and q (rolland pitch)

plane, and the other axis rotated through an angle with respect to the p and

q piane as shown in Figure B1. The p, q, and r (roll, pitch, yaw) coordi-

ate frame was selected as the orthogonal reference triad. Figure B2 shows

the projection of the tetrad input axes on the p and q plane,

: ,

The tetrad input axes can be expressed in terms of the reference triad

and configuration geometry by inspection as

"c01 ] 1 0 0 p]

_2 = 0 -C_ S_ q i
I

_3 C B SB 0 r .I

_4 Co,CA -C_SA S_

, L

where

: wi = angular rate sensed by tetrad gyro

p,q, r= roll, pitch, yaw rates

= 45°

B = 60°

A = 30°

C = Cosine

S = Sine
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• Figure B1. - Tetrad geometry

]

_2

1.14

u1

_ p

Figure B2,. - Projection of hexad input axes into q-p plane
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The two sets of orthonormal two-axis ISA outputs are defined by _]' '_2"

_3' and w4. The associated error equations are derived for the tetrad and
are sufficient to detect a first failure.

The tetrad error equations are derived by selecting pairs of triads from

the tetrad such as

_i' _2' w3 and Wl' _3' w4

and solving for p, q, and r in terms of the three-rowed submatrix inverses

associated with each pair of triads. That is, for the selected pair of triads

!1 "
_01 1 0 0 ,!p

' w2 = 0 -Ca -Sa , q

_3 .1 C B SB 0 r,. L J

i

w3 = CB -Ca -S_ q l

j ,w4 CAC_ -SACs Sa r

Taking the inverse

00 0= Cot 0 Csc(B) and =-TanA SecA 0

L-Cota_,etE Csc a CotaCsc(n)J L.CotSecA TanACota Csca

In an ideal system, subtracting any two of the expressions for p, q, or

r in each tetrad should yield gyro. Nonzero values are indications of gyro

(Wl) failures. The difference equations can, therefore, be identified as error

equations used to evaluate tetrad functional integrity. Subtracting the terms

for the tetrad yield the following equations:

E --CotA SecA (l-Sin A) (_3 + ¢°I)_c_ (w2 _4 )]
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• And for the angles as previously specified

E = 0.58 (_1 + _3 ) + 0. 707 (_2 - _4 )

To minimize the software requirements, the equation would be scaled

such that one of the coefficients in each error equation would become unity.

To be capable of discriminating low-level (soft) failures from normal

input random noise, the equation is first integrated and squared before com-
w

parison with an error tolerance equation for error detection. The error

tolerance equations is a second-order polynomial and its coefficients repre-

sent statistical sensor output error tolerances. The tolerance eouation _.

the form

" T = A+Bt+CL 2 i

where t

A = constant, based on the covariance of the scale factor and 1':

_. misalignment calibration uncertainties input axis geometry, !

and worst case rates. I

B = function of input axis geometry and random walk bias

covariance.

, _ C = function of input axis geometry and constant bias covariance.

. If the inequality

= IS t E dt.] 2 IA+ Bt + Ct 2E'

exists, a failure is indicated.

When a sensor failure is indicated, the appropriate error flag is set for

use by the error response/action routine ia the computer.
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: APPENDIX C

LASER GYRO READOUT CONFIGURATIONS

Establishment of criteria to determine the performance of the existing

readout circuitry is difficult because the outpu_ is dependent on the input rate

and may vary from zero pulses per second to several hundred thousand

pulses per second.

The photosensor in the readout circuitry detects movement of the laser

beam fringe pattern and converts this movement to a digital pulse train. The

: existing readout circuitry consists of two photosensors (1/4 wavelength of

beat frequency apart}. Each sensor generates _ digital pulse train. The

pulse trains are subsequently combined in a logic circuit to produce CW and

CCW pulses depending on the direction on the laser beam fringe pattern is

moving.

The two photos_nsor channels are not redundant in the normal sense;

i. e., they do not produce the same pulse train when the fringe pattern is con-

tinually reversing direction but do produce a similar pulse train (90 degrees

displaced with each other} when the fringe pattern is going in one direction.

There are four fringe pattern readout configurations, each employing a

different number of photosensors, that are examined for potential applicability.

Configuration 1

The roadout configuration shown in Figure C1 consists of a single photo-

detector and associated electronics feeding the line driver. Counts can be

generated from this configuration, but the direction the fringe pattern is

moving cannot be determined, so this configuration is of no practical value

for this application but is shown as a building block for other configurations.
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[ Photo detector channel 1

" H Hfringe Photodetector Differential Voltage Line
: pattern amplifier comparator driver

i

, Figure C1. - Single-channel readout

Configuration 2

The readout circuitry used on the gyro is shown in Figure C2 and con-

sists of two photodetector channels whose response to the moving fringe

i pattern is separated by 1/4 cycle of beat frequency). These two signals are

-- processed by directional logic circuitry to produce CW and/or CCW pulses

as inputs for the line drivers.

"--4 PhOtOdetectOr I =J "DI Line F
channelA _ driver CCW pulses

Laser - Directional
fringe 1/4_, Iog,c

p'tt='rn--_llPh°t°de_'_t°rLl _t Line F
Olannel B '- driver CCW pulses

Figure C2. - Standard readout
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Configuration 3

Figure C3 shows three photodetector channels being crossfed into three

sets of directional logic and subsequently producing three comparable sets of

CW and CCW pulses. Three angles are determined by subtracting the respec-

tive sets of clockwise pulses from counter-clockwise pulses for a given time

period. Failure in the readout circuitry exists anytime the three angles are

not within +1 pulse of each other. It is not possible to have a failu_'e in the

readout circuitry and to determine which of the output angles are valid b/

i examining the three output angles. For instance, a failure in the direction

' logic would result in two of the output angles being correct while a photo-

detector channel failure would invalidate two of the output angles.

Hard failures in the readout circuitry of Figure C3 may be detected using

the following criteria:

' • The three angles (A, B, and C) shall be ±1 pulse for each

other.

• The summation of pulses [_ (Pcw = PCCW )l from any one
of the outputs shall not equal zero.

Failure of the gyro to lase is also readily determined by this scheme as

well as failure of any power supply related to the readout circuitry or lasing

circuitry because the output pulse rate would go to zero.

Configuration 4

Figure C4 shows t_o separate qets of readout circuitry which are identi-

cal to the configuration 2 readout circuitry except that the photodetectors are

physically adjusted so their response to the moving fringe pattern is separated

by 1/4 cycle (1/4 k).
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fringe 1 Photodetector Directional

pattern l channel B logic H drive,Line_Angle B = (Pcw " PCCW)

1/3

drlve_
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Figure C3. - Crossfed redundant readouts

N I,neChannelA driver _' PCW
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pattern _ driver An_91e
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ChannelD d,_ver .....J

Figure C4. - Redundant readouts
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Hard failures in the readout circuitry of Figure C4 may be detected -_

: u_:ing the following criteria: . :

• The two angles (A and B) shall be within +1 pulse of each

other.

• The sumr:ation of the pulses _ (Pcw + PCCW )] from either _i

of the outputs shall not equal zero. :i

Failure of the gyro to lase is also readily determined by this schenue as

well as failure of any power supply related to the readout circuitry or lasing " t

circuitry because the output pulse rate would go to zero.

"i
: t

Figure C5 is an input]output curve which illustrates the effect of dither _

" spillover on pulse count. The amount of dither spillover is controlled by a - i

physical alignment. Dither spillover is presently adjusted to be below ±1 _.

count per cycle. For this scheme it would be adjusted between. 5 counts]

cycle and 1 count/cycle. For input rates near zero, the sum of the CW pulses _j

and CCW pulses for a given time period [_ (Pcw + PCCW )] remain constant

while the actual input rate is determined by subtracting the CCW pulses from i

the CW pulses for a given time period [_ (Pcw - PCCW )]" This phenomenon

is very useful in detecting failures inasmuch as zero pulses during a given _i

time period does not mean zero rate but a failure. :J

=J

• !
t

I

t
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Figure C5. - Input/output curve (+ count spillover)U
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APPENDIX D

FAILURE MODEL

In practical work it is often desirable to find an approximate solution to ai

i problem that is in a simpler form and is easier to evaluate. We are all

z familiar with certain approximations, like x for sin x if x is small; the same

: : approximation is also good for tan x under the same conditions. Let us derive

the approximate solution for the state block diagram, The simplest ,.zay of

obtaining an approximate expression is to use power series expansion for the

given result and then to keep only the first few terms, If we tried to apply

this method directly to our state block diagram model, we would have to

obtain the solution in terms of exponential expressioas and then expand these

terms in power series using the proper expression for the given exponentials.

It is obvious that the use of this procedure will be rather lengthy and time

consuming. Let us investigate, therefore, an alternate approach.

In the simplest case the state diagram can be expressed as a sequence of

arrows forming a straight path, An example of a ge._eral string is:

The state probabU.ity for the last state (failure state) will be given in Laplace

transform by

klk2k3 ... k N

PN(S) = (S+kl) (s+k 2) (s+k 3) .... (S+kN)S

If we expand the denominator, we will obtain

s N+I + sN (k +k 2 +k 3+ ..... kN ) + a N-l( )1 ,,.° .... °. -t- .... .,..
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: I

Substituting this expression in the equation giving PN(S) and then performing
long division, we obtain

klk2k 3 ..... kN

: PN (s) = ,, sN+l

,_ klk2k 3 ........ kN(k 1 +k 2 +k 3+ ...... +k N) :

sN+2 + ........ i

The above expression is then inverted

klk2k 3 ...... k N tN
PN(t) = N_.

klk2k 3 ...... kN (k 1 +k 2 +k 3 ..... +k N) +t N+I
: (N+IP.

If we use _k to denote the product of all failure rates and _k to denote

t the sum of all failure rates, we may rewrite the above formula as

I PN(t ) = _ (nk) (_k)t N+I' " (N+ 1P. + .... other terms

,!
i Normally we will use only the first terms for the approximate expression

:. , _ givingtheprobabilityof failure,Thus

" - N;

Since, in this case, we are dealing with an alternating power series, the next

i term will give an indication of the error involved. Or, numerically

lError I < {_k) (_,k)t TM

(N+IP.
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In addition to the k's probabilities, self-test deficiencies can be added to

the above expression. Where CN(S) = C 1 ° C 2 • C3, etc., substitution into

; the above expression results in the composite approximate expression

E (_kC)t N

PN (t) -_ P N:

whe r e

E is the sum of all paths from system operational to the
P point(s) of interest

N is the number of blocks in a path containing k's

rrkC denotes the products of all failure rates (k' s) and self-test
deficiencies (C' s) in a path

' denotes factorial

The following example demonstrates the use of this technique:

System

operational PCF
Potentially
castastmphic
failure

The probability of failure

4k" 3k. CEt2 4k(1-CE)t
PCF = 2: +" 1'

which reduces to 6k 2 CEt2 + 4k (1- CE)t°
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